Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
2.
J Neuroinflammation ; 21(1): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388518

RESUMO

Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.


Assuntos
Gliose , Doenças Retinianas , Camundongos , Animais , Humanos , Gliose/metabolismo , Fator H do Complemento/genética , Camundongos Endogâmicos C57BL , Retina/metabolismo
3.
J Biol Chem ; 300(4): 105784, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38401844

RESUMO

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.

4.
Front Immunol ; 14: 1226832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771595

RESUMO

Background: Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. Methods: We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. Results: With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. Conclusion: The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis.

5.
Amyloid ; 30(4): 424-433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37431668

RESUMO

BACKGROUND: Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE: To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS: We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS: We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION: Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Animais , Humanos , Proteína Amiloide A Sérica/metabolismo , Muramidase , Amiloidose/metabolismo , Amiloide/metabolismo
6.
Blood Adv ; 7(20): 6367-6380, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37428869

RESUMO

Complement activation in the diseases paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS) results in cytolysis and fatal thrombotic events, which are largely refractory to anticoagulation and/or antiplatelet therapy. Anticomplement therapy, however, efficiently prevents thrombotic events in PNH and aHUS, but the underlying mechanisms remain unresolved. We show that complement-mediated hemolysis in whole blood induces platelet activation similarly to activation by adenosine 5'-diphosphate (ADP). Blockage of C3 or C5 abolished platelet activation. We found that human platelets failed to respond functionally to the anaphylatoxins C3a and C5a. Instead, complement activation did lead to prothrombotic cell activation in the whole blood when membrane attack complex (MAC)-mediated cytolysis occurred. Consequently, we demonstrate that ADP receptor antagonists efficiently inhibited platelet activation, although full complement activation, which causes hemolysis, occurred. By using an established model of mismatched erythrocyte transfusions in rats, we crossvalidated these findings in vivo using the complement inhibitor OmCI and cobra venom factor. Consumptive complement activation in this animal model only led to a thrombotic phenotype when MAC-mediated cytolysis occurred. In conclusion, complement activation only induces substantial prothrombotic cell activation if terminal pathway activation culminates in MAC-mediated release of intracellular ADP. These results explain why anticomplement therapy efficiently prevents thromboembolisms without interfering negatively with hemostasis.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Hemoglobinúria Paroxística , Humanos , Ratos , Animais , Complexo de Ataque à Membrana do Sistema Complemento , Hemólise , Eritrócitos/metabolismo , Ativação do Complemento , Plaquetas/metabolismo , Hemoglobinúria Paroxística/genética
7.
J Immunol ; 211(3): 453-461, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306457

RESUMO

A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.


Assuntos
Fator H do Complemento , Periodontite , Camundongos , Animais , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento , Receptores de Complemento
8.
J Innate Immun ; 15(1): 412-427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858027

RESUMO

The complement system plays a crucial role in host defense, homeostasis, and tissue regeneration and bridges the innate and the adaptive immune systems. Although the genetic variants in complement C2 (c.839_849+17del; p.(Met280Asnfs*5)) and C8B (c.1625C>T; p.(Thr542Ile)) are known individually, here, we report on a patient carrying their combination in a heterozygous form. The patient presented with a reduced general condition and suffers from a wide variety of autoimmune diseases. While no autoimmune disease-specific autoantibodies could be detected, genetic analysis revealed abnormalities in the two complement genes C2 and C8B. Therefore, we performed a comprehensive investigation of the innate immune system on a cellular and humoral level to define the functional consequences. We found slightly impaired functionality of neutrophils and monocytes regarding phagocytosis and reactive oxygen species generation and a diminished expression of the C5aR1. An extensive complement analysis revealed a declined activation potential for the alternative and classical pathway. Reconstitution with purified C2 and C8 into patient serum failed to normalize the dysfunction, whereas the addition of C3 improved the hemolytic activity. In clinical transfer, in vitro supplementation of the patient's plasma with FFP as a complement source could fully restore full complement functionality. This study describes for the first time a combined heterozygous genetic variation in complement C2 and C8B which, however, cannot fully explain the overall dysfunctions and calls for further complement deficiency research and corresponding therapies.


Assuntos
Doenças Autoimunes , Complemento C2 , Humanos , Ativação do Complemento/genética , Complemento C2/genética , Proteínas do Sistema Complemento/genética , Variação Genética/genética
9.
Immunobiology ; 228(3): 152364, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881973

RESUMO

Factor H is a pivotal complement regulatory protein that is preferentially produced by the liver and circulates in high concentrations in serum. There has been an increasing interest in the extrahepatic production of complement factors, including by cells of the immune system, since this contributes to non-canonical functions of local complement activation and regulation. Here we investigated the production and regulation of factor H and its splice variant factor H-like protein 1 (FHL-1) by human myeloid cells. As validation, we confirmed the predominant presence of intact factor H in serum, despite a strong but comparable mRNA expression of CFH and FHL1 in liver. Comparable levels of CFH and FHL1 were also observed in renal tissue, although a dominant staining for FHL-1 was shown within the proximal tubules. Human in vitro generated pro- and anti-inflammatory macrophages both expressed and produced factor H/FHL-1, but this was strongest in pro-inflammatory macrophages. Production was not affected by LPS activation, but was increased upon stimulation with IFN-γ or CD40L. Importantly, in both macrophage subsets mRNA expression of FHL1 was significantly higher than CFH. Moreover, production of FHL-1 protein could be confirmed using precipitation and immunoblotting of culture supernatants. These data identify macrophages as producers of factor H and FHL-1, thereby potentially contributing to local complement regulation at sites of inflammation.


Assuntos
Ativação do Complemento , Fator H do Complemento , Humanos , Fator H do Complemento/genética , Células Mieloides/metabolismo , RNA Mensageiro , Proteínas Musculares , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
11.
Immunol Rev ; 313(1): 376-401, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398537

RESUMO

Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Hemoglobinúria Paroxística , Humanos , Proteínas do Sistema Complemento/metabolismo , Ativação do Complemento , Hemoglobinúria Paroxística/tratamento farmacológico , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Complemento C5/metabolismo , Complemento C5/farmacologia , Complemento C5/uso terapêutico , Inativadores do Complemento/uso terapêutico , Inativadores do Complemento/farmacologia
12.
Acta Biomater ; 155: 123-138, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328123

RESUMO

The use of biomaterials in modern medicine has enabled advanced drug delivery strategies and led to reduced morbidity and mortality in a variety of interventions such as transplantation or hemodialysis. However, immune-mediated reactions still present a serious complication of these applications. One of the drivers of such reactions is the complement system, a central part of humoral innate immunity that acts as a first-in-line defense system in its own right but also coordinates other host defense responses. A major regulator of the complement system is the abundant plasma protein factor H (FH), which impairs the amplification of complement responses. Previously, we could show that it is possible to recruit FH to biomedical surfaces using the phage display-derived cyclic peptide 5C6 and, consequently, reduce deposition of C3b, an activation product of the complement system. However, the optimal orientation of 5C6 on surfaces, structural determinants within the peptide for the binding, and the exact binding region on FH remained unknown. Here, we show that the cyclic core and C-terminal region of 5C6 are essential for its interaction with FH and that coating through its N-terminus strongly increases FH recruitment and reduces C3-mediated opsonization in a microparticle-based assay. Furthermore, we could demonstrate that 5C6 selectively binds to FH but not to related proteins. The observation that 5C6 also binds murine FH raises the potential for translational evaluation in animal models. This work provides important insight for the future development of 5C6 as a probe or therapeutic entity to reduce complement activation on biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials have evolved into core technologies critical to biomedical and drug delivery applications alike, yet their safe and efficient use may be adversely impacted by immune responses to the foreign materials. Taking inspiration from microbial immune evasion strategies, our group developed a peptide-based surface coating that recruits factor H (FH), a host regulator of the complement system, from plasma to the material surface and prevents unwanted activation of this innate immunity pathway. In this study, we identified the molecular determinants that define the interaction between FH and the coated peptide, developed tethering strategies with largely enhanced binding capacity and provided important insight into the target selectivity and species specificity of the FH-binding peptide, thereby paving the way for preclinical development steps.


Assuntos
Complemento C3b , Fator H do Complemento , Animais , Camundongos , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Materiais Biocompatíveis/farmacologia , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562899

RESUMO

Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , alfa-Defensinas , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/microbiologia , Enterotoxinas/química , Humanos , Peixe-Zebra/metabolismo , alfa-Defensinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
14.
Mol Ther Methods Clin Dev ; 25: 96-110, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35402633

RESUMO

In adenovirus type 5 (HAdV-5)-derived viral vectors, the fiber protein has been the preferred locale for modifications to alter the natural viral tropism. Hexon, the most abundant capsid protein, has rarely been used for retargeting purposes, likely because the insertion of larger targeting peptides into Hexon often interferes with the assembly of the viral capsid. We previously observed that positively charged molecules enhance the transduction of human multipotent mesenchymal stromal cells (hMSCs)-a cell type of significant interest for clinical development but inefficiently transduced by unmodified HAdV-5-based vectors. As efficient HAdV-5-mediated gene transfer would greatly increase the therapeutic potential of hMSCs, we tested the hypothesis that introducing positively charged amino acids into Hexon might enhance the transduction of hMSCs, enabling efficient expression of selected transgenes. From the constructs that could be rescued as functional virions, one (HAdV-5-HexPos3) showed striking transduction of hMSCs with up to 500-fold increased efficiency. Evaluation of the underlying mechanism identified heparan sulfate proteoglycans (HSPGs) to be essential for virus uptake by the cells. The ease and efficiency of transduction of hMSCs with this vector will facilitate the development of genetically modified hMSCs as therapeutic vehicles in different disciplines, including oncology or regenerative medicine.

15.
J Immunol ; 208(5): 1248-1258, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173033

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.


Assuntos
Antígeno B7-H1/metabolismo , Ativação do Complemento/imunologia , Complemento C3/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Hemoglobinúria Paroxística/patologia , Antígeno B7-H1/sangue , Antígenos CD55/genética , Antígenos CD59/genética , Complemento C3/imunologia , Complemento C5/imunologia , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Hemoglobinúria Paroxística/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Proteínas de Membrana/genética , Monócitos/metabolismo
16.
Blood ; 139(13): 1954-1972, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415298

RESUMO

In 2007 and 2009, the regulatory approval of the first-in-class complement inhibitor eculizumab revolutionized the clinical management of 2 rare, life-threatening clinical conditions: paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). Although being completely distinct diseases affecting blood cells and the glomerulus, PNH and aHUS remarkably share several features in their etiology and clinical presentation. An imbalance between complement activation and regulation at host surfaces underlies both diseases precipitating in severe thrombotic events that are largely resistant to anticoagulant and/or antiplatelet therapies. Inhibition of the common terminal complement pathway by eculizumab prevents the frequently occurring thrombotic events responsible for the high mortality and morbidity observed in patients not treated with anticomplement therapy. Although many in vitro and ex vivo studies elaborate numerous different molecular interactions between complement activation products and hemostasis, this review focuses on the clinical evidence that links these 2 fields in humans. Several noninfectious conditions with known complement involvement are scrutinized for common patterns concerning a prothrombotic statues and the occurrence of certain complement activation levels. Next to PNH and aHUS, germline-encoded CD59 or CD55 deficiency (the latter causing the disease complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy), autoimmune hemolytic anemia, (catastrophic) antiphospholipid syndrome, and C3 glomerulopathy are considered. Parallels and distinct features among these conditions are discussed against the background of thrombosis, complement activation, and potential complement diagnostic and therapeutic avenues.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Hemoglobinúria Paroxística , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Antígenos CD55/uso terapêutico , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Humanos
17.
Semin Immunopathol ; 43(6): 773-788, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34191093

RESUMO

Complement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis.This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.


Assuntos
Queimaduras , Sepse , Animais , Queimaduras/complicações , Proteínas do Sistema Complemento/fisiologia , Humanos , Inflamação/complicações , Estudos Prospectivos , Sepse/complicações
18.
Front Immunol ; 12: 615748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732239

RESUMO

To discriminate between self and non-self surfaces and facilitate immune surveillance, the complement system relies on the interplay between surface-directed activators and regulators. The dimeric modulator FHR-1 is hypothesized to competitively remove the complement regulator FH from surfaces that strongly fix opsonic C3b molecules-a process known as "deregulation." The C-terminal regions of FH and FHR-1 provide the basis of this competition. They contain binding sites for C3b and host surface markers and are identical except for two substitutions: S1191L and V1197A (i.e., FH "SV"; FHR-1 "LA"). Intriguingly, an FHR-1 variant featuring the "SV" combination of FH predisposes to atypical hemolytic uremic syndrome (aHUS). The functional impact of these mutations on complement (de)regulation, and their pathophysiological consequences, have largely remained elusive. We have addressed these questions using recombinantly expressed wildtype, mutated, and truncated versions of FHR-1 and FH. The "SV" to "LA" substitutions did not affect glycosaminoglycan recognition and had only a small effect on C3b binding. In contrast, the two amino acids substantially affected the binding of FH and FHR-1 to α2,3-linked sialic acids as host surfaces markers, with the S-to-L substitution causing an almost complete loss of recognition. Even with sialic acid-binding constructs, notable deregulation was only detected on host and not foreign cells. The aHUS-associated "SV" mutation converts FHR-1 into a sialic acid binder which, supported by its dimeric nature, enables excessive FH deregulation and, thus, complement activation on host surfaces. While we also observed inhibitory activities of FHR-1 on C3 and C5 convertases, the high concentrations required render the physiological impact uncertain. In conclusion, the SV-to-LA substitution in the C-terminal regions of FH and FHR-1 diminishes its sialic acid-binding ability and results in an FHR-1 molecule that only moderately deregulates FH. Such FH deregulation by FHR-1 only occurs on host/host-like surfaces that recruit FH. Conversion of FHR-1 into a sialic acid binder potentiates the deregulatory capacity of FHR-1 and thus explains the pathophysiology of the aHUS-associated FHR-1 "SV" variant.


Assuntos
Proteínas Sanguíneas/metabolismo , Fator H do Complemento/genética , Regulação da Expressão Gênica , Animais , Complemento C3/metabolismo , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Hemólise , Humanos , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Coelhos , Ovinos
19.
Blood ; 137(4): 443-455, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507296

RESUMO

Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a "C3 bypass" activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data.


Assuntos
C3 Convertase da Via Alternativa do Complemento/fisiologia , Complemento C3/antagonistas & inibidores , Complemento C4b/fisiologia , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Modelos Imunológicos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Membrana Celular/imunologia , Complemento C5/química , Inativadores do Complemento/uso terapêutico , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Resistência a Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Conformação Proteica
20.
Front Immunol ; 11: 596415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178228

RESUMO

The alternative pathway regulator Factor H-like protein 1 (FHL-1) is composed of the first 7 N-terminal complement control protein domains of Factor H (FH) and protects host surfaces from uncontrolled complement attack. Although FHL-1 shares the N-terminal regulatory domains with FH, it was thought to be a weaker regulator. Recently, the regulatory activity of FHL-1 was shown to be comparable to FH. Nonetheless, the question remained whether FHL-1 is an indispensable, unique regulator. The discovery that FHL-1 is the predominant regulator on Bruch's membrane, a critical site for the onset and progression of age-related-macular degeneration (AMD), showed that FHL-1 is essential for complement regulation. A common single nucleotide polymorphism in FH/FHL-1 that predisposes for AMD underlines the important role of FHL-1 in this context. Reports that some cancer tissues specifically upregulate FHL-1 expression, thereby evading immune surveillance, suggests a pronounced regulatory activity of the splice variant. Several microorganisms specifically recruit FHL-1 to evade complement attack. From a phylogenetic point of view, FHL-1 appears much later than other complement regulators, which could imply a specific role that is possibly not systemic but rather tissue specific. This review focuses on the current knowledge of FHL-1 and its physiological and pathophysiological roles.


Assuntos
Processamento Alternativo , Proteínas Inativadoras do Complemento C3b/genética , Regulação da Expressão Gênica , Animais , Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...